Irmed dervices 1echnical Information Hgency

Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED
YOUR PURPOSE so that it may be made available to other requesters, Your cooperation
will be appreciated.

,‘J

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA :
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED
GOVERNMENT PROCUREMENT OPERATION, THE U, S. GOVERNMENT THEREBY: INCURS

NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE

SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR.PERMISSION TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT "MAY IN ANY WAY BE RELATED THERETO.

Reproduced by

DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, 2, OHIO




- e e . e 1 e = e e R PR
! '
v B
)
' -
[
- -
T .
'
¢ /
w?
L]
I .

¥

Dproduced

FROMLOW CONTRAST COPY.

¥ -~ .
L - ‘l ’?
f .
ya Y
~ T \
' ’ - ? 7
| \
«
. . ' ' -
(. i \t ¥
L ;o
» \ -
. o
Ty
i . ’ ! ,

e




P

AD No.iiiéé’ |

ASTIA FiLE copy

e

]

SELECTION OF A DISTRIBUTION FUNCTION TO XINIMIZE
AN EXPECTATION SUBJECT TO SIDE CONDITONS

HERMAN CHERNCFF AND STANLEY REITER

TECHNICAL REPORT NO. 23
MARCH 12, 1954

This work was sponsored by the Army, Navy, and Air
Force through the Joint Services Advisory Committee
for Research Groups in Applied Mathematics and

Statisties by Contract No. NSonr 25140 (NR-342-022)

APFLIED MATHEMATICS AND STATISTICS LABGRATORY
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

[ TP W LIS .
PO bk

[N B 4

i By f‘i o

. .
wway ‘v

[

PP

R ol



Selection of a Distribution Function to Minimise
an Expectation Subject to Side Conditions

By

Herman Chernoff and Stanley Reiter
Stanford University

I. The following problem arises in a bicassay problem. We wish to

choose a c.d.f. F of x so as to minimlze E where,

E = 5 g(x) d 6(x)

subject to
1) Sx d G(x) = ¢,
2
(2) Sx d G(x) = ¢,
where ey and ¢, are given positive constants <, > ci and
- ,@x
g(x) =1-e .

e are also interested in finding that c.d.f. which makes E a maximum,

subject to the constraints above.
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We obtain the following results.

In Section II it is shown that the minimdzing c.d.f, exists and
that for this c.d.f. the probability is concentrated at two points, one
of which is zero., The minimizing c.d.f. is,

0 fbrx<0
2
! ¢2
F(x) = 1--0—- forOsx<g- .
2 1
c
1 rorxz.---a
!

In Section III we find that the maximizing distribution does not
exist, but that the maximum can be appraximated as closely as we like

by a two point distribution satisfying the constraints. The approxi-

mation of the maximum to within € > 0 1s obtained by placing very

large probability at ¢; - 9 (€) and the remalning probability st a value
of x sufficiently large to satisfy the conditions on the expected

value of xzc

In Section IV we compute the value of the minimum for various

values of the parameters.

We find those values of - ﬂx for which
l-c¢ is equal to .90, .85, .80,...,.01
respectively. For each value of - ﬁx so obtained we compute f gdPF

as a function of the coefficient of variation. The functions are plotted

on the accompanying graphs.
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II. A. Ve consider the following problem: given Byseeerly continuous
real valued functions defined on the interval [a,b] we wish to find that
c.d.f, F, which minimizes

(1.1) j‘gl 4
subject to the constraints
(1.2) k < fgi d6 sk i=2,...,n

for Ge3‘L the class of ¢.d.f.'s on [a,b].

a,bj’
Ve ah;ll show that the minimizing c.d.f. is discrete, concentrating
probability on at most n points of the interval [a,b].
Proposition 1. The class ia,b ] is convex and compact in the topolegy of
convergence in distribution. [The ccmpactness of Proposition 1 is a
restatement of Helly's theorem].
Let the mapping T: 3[a,b]"nn be given by TeG = (Sgl(x)dG(x) ,ngdG,...,SgndG‘
for G ,bj? when R, 1s n-dimensional Euclidean space.

[a

Dencte by Y the image of 31 vnder T. We shall souetimes denote

a,b
points of Y by y. The transrormat;.oxjx T 1s linear and therefore is con-
tinuous and prescrves convexity. lence we have:
Proposition 2. The set Y is convex, closed and vounded.

The restrictions (1.2) define a closed convex subset of Y; call
this set Y,

Vie restate owr problem as follows., We wish to find that point y
in Y whose first coordinate is a minimun, Since T' is closed and
bounded a minimizing point exists ard is a boundary point of T and also

of Y so long as !l is non-null,

o . = e - e es ey i LIV yas
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We characterize the minimum as follows. It is assumed at a boundary
point ?r' of Y. Hence there is a supporting hyperplane H for Y containing

’;. But H is at most n=l-dimensional. Therefore y can be written as a

convex combination of at moet n extreme points of Y which lie in H,

_But it is easy to sec that all extreme points of Y correspond to one

point distributions, i.e. points of the form,

({ g () 5,60, f 8, ()4 5.(x)) = (g)(c),eru,g (e))

where

0 forx<c

5,(x) =

1l forx2c

Thus y may be glven by

n n
y - ?__‘i)j( { gy xa 5o G)aees { eata 5cJ<X>>

n
- Jz-l. 2‘1(&1(03):“'9%(53))

where

ikj'l:kj 20 .

=1

From which it follows that

Fe
J% As Scj(x)

e e e o waNE o
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is the minimizing distribution.
B, Consider the following problem. Let
gl(x) =] ¢
gz(x) -Xx

2
gy(x) = x

be defined for x 20,

Let 3 be the class of ¢.d.f.'s on [0,ac), e wish to find that

c.d.f. T in J which minimizes

‘fgldF

subject to

J‘gBdF"c‘2

2‘
where c2 2 clo

In order to apply the results of A we shall first consider a
modification of this problem as follows.

Let 15 8 & be defined for x&[0,b] for same b > 0, and let 3, be

replaced by 3[0 p)» the class of e.d.f.'s on [0,b]. In thls modificatden
?

the results of II assure us that the minixum exists and that it is given

by a discrete distribution concentrated at not more thzn three points,
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In the present case this result can be sharpened. The minimizing
c.d.f. is concentrated at just two points, one of which is sero. The
following argument establishes this.

\le know that there is a supporting plane of Y at the winimm y,
that is, for soms A, 12, )3 and k.

Zlyl* 7\2y2+ )3 y; 2k for all yeY .

Since the first coordinate 7y i3 being minimized we know that 7(1 g0,
and may normalize so as to make )1 = 1, Also, y can be written as a
convex combination of extreme points of Y satisfying the (same) linear

relation, We ask, "For how many x's in [0,b] is the function
(1) g(x) + Ny x v Ay

minimized?" We show that there are at most two, one of which is zero.

Differentiating with respect to x we find that the derivative,
- X -
(2) Be A%, 020 x=0

is a convex function and has at most two roots. These cannot both give
minima, for if they did, thece must be a maximum of (1) between them

and hence a third root of (2). Thus, the case of two roots in the
interior of [0,b] corresponding to minima is excluded.
The following cases remain,

[
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Consider the possibility that the function (1) is minimized at three
points o, x, b, 0 <x <b.

We exclude this by noting that there would then be a relative
maximm of (1) between O and x and hance a root of (2) between O and x,
ard similarly, between x and b, This inplies that there are three
distinct roots of (2), which is false.

We are left with three cases; First that the minimum is assumed
at just one point,which is the case when c, = ci, In this case the
minimizing distribution is 9 c, (x) and the minimum is (1 - @ 7 cl)a

There remain two possibi{ities, that the minimum involves the
palr of points O, and x or else that it involves the pair x and b,

We shall show that there 1s a value of b, say by, so that for b > b,
the minimum does not involve b,

Suppose b > ¢,. (I£ b < ¢, the restrictions cannot be gsatisfied. )
Suppose we use two points, 0, x, with probabilitles 1 - p and p
respectively. The restrictlons are then sufficient to determine x and
p. We obtain

So that the value of E = Sgl d F obtained when O is involved is

0

A2
ﬂcl)

=N

Q-e

N 85
°
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From strict concavity of & it follows that

2 -
(1-e cl)%ﬂl-o A,

L)

Given & > 0 we may select bo(ﬁ) such that

>1 =2 < €.

b
b,

0
Then if vwe use x and b with probabilities 1 « p and p respectively

we find that where b > bO

(II.-x:')Jr.z*pbz'-c:E
implies

c ¢
pb<—3—<53<£

l-p>l—€ .

From the first restriction it faollows that x is forced to be close to

cl’ io‘o




Q-p)x+pb=o

1 b
x'°1'91(1-_p'1)’§$
|x - o)) se1(aBp) + 7%

NCREE -

Thus x can be made to differ arbitrarily little from c, as & C.

Now since gl(x) is monotone increasing
P g (x) + (1-p) gy(b) 2 gy(x) > gy(eq) - 7

for € sufficiently small, say & < E,. Thus, we find that using O
and x gives a lower value of E than that obtained using x and b for
b > by(&,)s
Thus, the minimum is attained by a c.d.f. concentrating probabiliiy
2 2

c [ c
Q- —-) at O and probability -l at x = =2, The minimum is then

2
Q /°1>

C. We have shmm in B that for the problem with [0,c0 ) replaced by

which is independent of b.

(O,b], the minimizing c.d.f. exists, that it is a distribution con-
centrated at 0 and one other point and that the minimum is

/cl

We now show that this is in fact the minimum over all Ge 3.

1-e ) --, which is independent of the bound b,

u— e B P e . e~ W7 IO " N
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Take any G 3 satisfying

fxdc-cl
2 -
‘fx d6 02 .

Then fgl d G exists.

Given €> 0 we can find b so large that

foe)
J xdG< E

mx'?dG<€
¥

ol 2 -*
u2-£<,6{’?x dG ¢:2<c2

and by the previous regult,

S
MR
(1L~e );-;-gbfgld6<fgld6 .
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Since this is true for every £ > 0 it follows by continuity that

C
2
'ﬁ?’ f.i ®
1-e )-;g! gd G for all G e
2 :

and hence that the two point distribution ylelds the minimum,
III. We consider the problem to find that c.d.f. F(x) which maximizes
JOIS

-/8x
5= Ja-e ) arw
subject to the constraints

(1) fx d F(x) = ey

(2) sz d Fix) » ey

-~

where ey and ¢, are given positive constants, e, > c;
LS

/e notice first that if we ignore the constraint (2) then the

maximizing c.d.f. is

18] for x s’cl

561(1)- L .
orx;cl

Thls follows readily from the fact that 1 - e d is a concave function.

Inposing an additional constraint, namely (2) cannot increase the

N gt
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maximum, However, we notice that we can get as close as we please to

the maximum, i.e., given & > O we can find x and p such that
(1-p)(c;=8) + px = ¢

(l-p)(c,_-AS)2 +pxim c,

and given £ > O we may take & > O such that

- - - -
Al e a-e a0 P g

(1L-e o
Thus, the second constraint rcquires at least a two point distributien,

while the concavity of g, precludes actually attaining gl(cl) with such a
distribution. Hence the maximizing distribution does not exist, The

maximum may be approximated as closely as we like by a twe point distri-
bution satisfying both constraints.

IV, Computational Results,

Let

N
by}
]
Ly
<
n
'
Rol®n

then
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) 1+v2

We shall consider the values of X andﬂ for which E 18
090, 85, 480,.40,.05, .01, i,8., those values of )  for which

F(Y) =] ~e -r- o90, 085’ 080'000,005, Ol &

For each value of ¥ so obtained we plot in the accampanying graphs
the expected value §

as a function of the coefficient of variation, v2, for values 0 g v2 <6,
It 1s interesting that when the expectation corresponding to a
value of ¥ is small, the effect of increasing the coefficient of
variation is also small, For example, if J is such that E is .15
then E is reduced to ,098 if the coefficlent of variation is in-
creased from O to 6,
Ir the accompanyling graphs we also coapare E as a function of
the coefficient of variation of x when the minimiging distribution is
used with the corresponding quantities when x has the Gamma distribution,
Suppose that x has a Gamma distribution, 1.e., the density f of x
is given by

f(x)-w x>0

'(n)

o

e — —, © . B e S iy . SR il |

O

L i e T T e
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Then
E(x) = é
E(xz) o B{n+1) .
&
The coefficlent of variation is given by
n(n+l ﬁ

We also have

X =

(]

1
vE(x)

Suppose we are given a mean E(x) for which ¥ ylelds cxpectation F
Then

F-l-e_E(xw o

Now we assign a coefficient of variation v2. Then the value of F is

S b+ s i b 2o < s W A

S——

!
1
i
|
1
i
!
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-n- (5&%)“] -1- u+§1’"

i
=1-%1 +/BE(x) vz} v2
wherepE(x) =~ log (1 ~F)

1

E[l-e"/ng-l-{l-.vzlog (J..F)}"2

e e v e AT =
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V. The methods and results of this paper are similar to those of

P, C. Rosenbloom, "Quelques classes do problumss extrfmaux,” Bull. Soc.
Math., France 79 (1951) 1-58, 80 (1952) 183~-215 and S. Karlin and

L. S. Shapley, "Geometry of Momsnt Spaces," Memolrs of the Amer, Math,
Soc., No. 12, 1953, pp. 1-93.
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